- 8. When Bill makes a sandwich, he may choose from among 3 kinds of rolls, 4 varieties of meat, and 2 types of sliced cheese. If he chooses one roll, one meat, and one type of cheese, how many different kinds of sandwiches can he make?
 - (A) 9 (B) 14 (C) 24 (D) 288

$$3x - 4 \ge 0$$

- 9. Which of the following subsets of the real numbers best describes the solution set of the inequality above?
 - (A) $\left[0, \frac{4}{3}\right]$
 - (B) $\left[\frac{4}{3}, \infty\right)$
 - (C) $\left(-\infty,\infty\right)$
 - (D) $\left(-\infty, -4\right] \cup \left[3, \infty\right)$
- 10. Which of the following statements about an event *A* are true?
 - I. The probability that the event A will occur can be less than 0.
 - II. The probability that the event A will occur can be equal to 1.
 - III. The sum of the probability that event *A* will occur and the probability that event *A* will not occur is equal to 1.
 - (A) II only
 - (B) I and II only
 - (C) II and III only
 - (D) I, II, and III
- 11. The difference between the mean and the median of the numbers 27, 27, 29, 32, and 35 is
 - (A) 0 (B) 1 (C) 3 (D) 8

- 12. In a class with 50 students, 25 of the students are female, 15 of the students are mathematics majors, and 10 of the mathematics majors are female. If a student in the class is to be selected at random, what is the probability that the student selected will be female or a mathematics major or both?
 - (A) 0.4 (B) 0.5 (C) 0.6 (D) 0.8
- 13. On an exam for a class with 32 students, the mean score was 67.2 points. The instructor rescored the exam by adding 8 points to the exam score for every student. What was the mean of the scores on the rescored exam?
- 14. A new computer graphics company employs 10 programmers. The company decides to expand into digital animation and needs to transfer 3 of the programmers into the new department. How many different combinations of 3 programmers can be chosen to transfer to the new department?
 - (A) 3 (B) 30 (C) 120 (D) 840
- 15. The faces of a fair cube are numbered 1 through 6; the probability of rolling any number from 1 through 6 is equally likely. If the cube is rolled twice, what is the probability that an even number will appear on the top face in the first roll or that the number 1 will appear on the top face in the second roll?
 - (A) $\frac{1}{12}$ (B) $\frac{7}{12}$ (C) $\frac{2}{3}$ (D) $\frac{3}{4}$
- 16. If $R = \{x \mid x > 0\}$ and $S = \{x \mid x < 3\}$, what is the number of integers in $R \cap S$?
 - (A) Zero (B) Two (C) Three (D) Four